Dept. of Computer Engineering
Final Exam, First Semester: 2013/2014

Course Title: Engineering Analysis II	Date: 28/1/2014
Course No:	(630262)
Time Allowed: 2 hours	

NOTES:

- Round ALL your calculations to 4 significant digits
- Angles for trigonometric functions are in radian scale

Please Choose your section:

Question 1:
(6 points)
Use Gaussian Elimination to solve the following system of linear equations:

$$
\begin{aligned}
& 3 x+2 y+z=1 \\
& 5 x+3 y+4 z=2 \\
& x+y-z=1
\end{aligned}
$$

Question 2:
Find the root of the following equation using three Newton-Raphson iterations, start with $x_{0}=0.5$ and find x_{1}, x_{2}, x_{3}, find the relative error in each iteration.

$$
\cos (x)=x^{3}
$$

Question 3:
(6 points)
a) Torque T and Speed w for a motor is given in the table below. Use $\underline{3}^{\text {rd }}$ order Newton interpolating polynomial to estimate the torque at a speed of 1.8 rpm

Scaled Speed (rpm)	0.5	1.0	1.5	2.0
Torque $(N \cdot m)$	31	28	24	14

b) Consider the following table of functional values for $f(x)=\ln (x)$

x	0.5	0.7	0.8
$\ln (x)$	-0.69315	-0.35667	-0.22314

Apply $\underline{2}^{\text {nd }}$ order Lagrange interpolation to approximate $f(0.6)$, and find the relative error in your approximation

Question 4:

(6 points)
Assume that you currently have 1.5 million Dinars, it grows at a rate given by the differential equation:

$$
m^{\prime}=0.3\left(1+t-\frac{m}{10}\right) m
$$

approximate the amount of money after one (1.0) year. Use Runge-Kutta order 2 method (RK2) with a step size h=0.5

GOOD LUCK

Approxiomate the integral:

$$
\int_{-0.5}^{1} \frac{2}{\sqrt{2 \pi}} e^{\frac{-x^{2}}{2}} d x
$$

using:
a) Composite Trapezoidal method with 5 points (3 marks)
b) Composite $1 / 3$ Simpson Method with 5 points (3 marks)

Question 6:
(6 points)
Use non-linear regression to fit the points to a function of the form $y=C e^{D x}$ then approximate $y(10)$

x	0	1	3	5	7	9
y	5	3.72	2.01	1.21	0.64	0.34

Question 7:

Choose the correct answer (answer on question sheet):

1) if 5 and 2 are the eigen values of $[A]=\left[\begin{array}{ll}4 & 2 \\ 1 & 3\end{array}\right]$ then the eigen values of $[A]^{2}$ are:
a) 2 and 5
b) 4 and 7
c) 4 and 10
d) 4 and 25
2) $[A]$ and $[B]$ are square matrices, if $[B]=[A]^{T}$, which of the following is true?

$$
\begin{equation*}
[B]^{2}=\left([A]^{2}\right)^{T} \tag{I}
\end{equation*}
$$

(II) $\quad \operatorname{det}(A)=\operatorname{det}(B)$
a) (I) only
b) (II) only
c) (I) and (II)
d) both are false
3) To find the root of $x^{3}-2 x+5=3$, you can start with x_{L} and x_{U}
a) $\quad x_{L}=-3, x_{U}=-2$
b) $\quad x_{L}=-2 \quad, \quad x_{U}=-1$
c) $\quad x_{L}=2 \quad, \quad x_{U}=3$
d) $\quad x_{L}=1 \quad, \quad x_{U}=2$

